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Figure 1: Illustration of the core computation made within one layer of the HOTS algorithm. On the top of
the plot,  we show the dendritic stream of events convolved by an exponential decay which forms the time
surface. Time surfaces are computed at the timestamp of each event/spike. The time surface at present is
represented with the colored bar plot on the top. In the vertical slice, computations made within one layer at time
ti are illustrated. The time surface is compared to all the kernels of the layer with the similarity measure resulting
in the membrane potential of the postsynaptic neuron represented in green. As an illustration, the layer contains
only 4 neurons associated to 4 different kernels and with 10 dendritic inputs. At last, a winner-take-all rule (or
argmax non-linearity) will choose at time ti the most activated neuron. This will emit a spike and prevent the
others from being activated through lateral inhibitions (in red). Note that for each event as input of the layer, a
new event will  be emitted with the same timing as the incoming event. Figure adapted from  Grimaldi  et  al
(2023)  .
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Figure 2: Always-on classification performance of the SNN solution. Our SNN solution allows to perform a
classification at any time and we show here the average accuracy computed on the N-MNIST dataset with
respect to the number of events since the beginning of the stream. The red horizontal dashed line shows the
classification performance for the offline method described in Lagorce et al. 2017.   In blue, we show the results
for our online classification algorithm and in orange, as a control,  a MLR applied on the raw event stream
(without passing through the HOTS network). This shows a rapid classification after a few hundreds events.
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https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7508476
https://laurentperrinet.github.io/publication/grimaldi-23/
https://laurentperrinet.github.io/publication/grimaldi-23/
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1. Disclaimer

This deliverables describes activities in the project dedicated to the coastline detection,  however with a
standard non-foveated sensor because of  the delayed availability  of the foveated sensor.  Therefore,  all
content described here is based on a sensor with constant resolution. 
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2. Introduction

We developed a SNN-based machine learning adapted for DVS signal and report  here our progress in
applying  it  to  coastline detection.  To  achieve  this,  we first  extended an existing  event-based algorithm
[Lagorce et al., 2017  ], which introduced novel spatio-temporal features as a Hierarchy Of Time-Surfaces
(HOTS). Built from asynchronous events acquired by a neuromorphic camera, these time surfaces allow to
code  the  local  dynamics  of  a  visual  scene  and  to  create  an  efficient  event-based  pattern  recognition
architecture.  Our  first  contribution  was to  add  a homeostatic  gain  control  on the  activity  of  neurons  to
improve the learning of spatio-temporal patterns. A second contribution is to draw an analogy between the
HOTS algorithm and Spiking Neural  Networks (SNN).  Following that  analogy,  our last  contribution is to
modify the classification layer and remodel the offline pattern categorization method previously used into
an online and event-driven one. This classifier uses the spiking output of the network to define novel time
surfaces and we then perform online classification with a neuromimetic implementation of  a multinomial
logistic regression. Not only do these improvements increase consistently the performances of the network,
they  also  make  this  event-driven  pattern  recognition  algorithm  online  and  bio-realistic.  This  work  is
currently reviewed by the journal Neural Networks and is available as a preprint  . This algorithm was tested
on  different  datasets  for  symbol  recognition  and  aim  at  being  applied  to  coastline  detection.  This
classification for  each event  can easily  be  adapted  to  a  segmentation  algorithm allowing  to  distinguish
between the sea and the ground in order to locate the coastline. This report presents some results on the
datasets developed during the APROVIS3D project.
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Figure  3: From detection to segmentation: In this WP, we used patch-based detection to
determine which areas of the visual field are part of the ground or land and which are part of
the sea. The interface between the two categories gives the outline of the coastline.

https://www.techrxiv.org/articles/preprint/A_robust_event-driven_approach_to_always-on_object_recognition/18003077/1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7508476


3. Documentation

3.1 Applicable and Referenced Documents 

# Id Description
Identifier
(Ed Rev)

Date

AD1 FPP Full Project Proposal 1.0 15.01.2019

3.2 Glossary and Terminology

Acronym Definition

WP Work Package
SNN Spiking Neural Network
ML Machine Learning
HOTS Hierarchy Of Time-Surfaces
MLR Multinomial Logistic Regression
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4. Contents

4.1 Methodology: An already existing event-based algorithm

Our method is based on an existing algorithm for event-based pattern recognition: Lagorce et al. 2017  . In this
work, the authors define time surfaces, a spatio-temporal object useful to treat the dynamics within the stream of
events. With a hierarchical network able to learn prototypical time surfaces, the stream of events is transformed
and used as an accumulation of spatio-temporal features to perform object classification. Its name stems from
this Hierarchy Of Time Surfaces (HOTS). Major advantages are the event-triggered, online and unsupervised
training of the hierarchical network and the transformation of the flux of events into a more complex flux of
events allowing stacking of layers. This method is easily transferable to neuromorphic hardware considering the
event-based nature of the computations. 

4.2 Improvements

We identified two major drawbacks for this interesting algorithm: its learning of time surfaces is very sensitive to
initialization and the classification is  done offline,  once the stream of  events is  treated by the network,  by
assessing the activation of the last layer through histogram comparison. 
To deal with the variability in the clustering phase, we introduce a homeostatic gain control to regulate the
activity of the neurons within one layer. Regarding the past activity of the neurons, one is prevented or
encouraged to spike wether if it did or did not spike enough compared to neighbouring neurons. Results on
the improvements linked to homeostasis are reported in a conference article: Grimaldi et al. 2021  . 
Then, we introduce a new classification layer that allows event-per-event online classification. The spiking
mechanism of this classification layer is similar to one layer of the HOTS network and is illustrated in Figure
1. This always-on classifier is performed by a MLR and results are reported in this preprint: Grimaldi et al.
2023  .  In this article, we also demonstrate formally the relationship between this event-based, always-on
classification algorithm and a SNN. Again, we show that this algorithm is implementable in a neuromorphic
device. 

4.3 Results on the N-MNIST dataset 

We first report classification results on a widely used dataset: the N-MNIST dataset, which is a neuromorphic
version of the well-known MNIST dataset. We show that with only a small number of events in the event stream,
the performance of our method outperforms the previous offline method. By the end of the event stream, its
performance is competitive with the state of the art. This enables ultra-fast object categorisation, and we plan to
apply this method to a segmentation task for coastline detection.

4.4 Patch-based segmentation with HOTS

We have developed a bio-inspired machine learning algorithm for event-based vision. This algorithm essentially
uses a SNN and can be implemented on a neuromorphic chip. Organised in a hierarchical structure similar to
the visual cortex, our network is able to recognise spatio-temporal prototypical patterns through time surfaces.
These time surfaces exploit the delays between the last recorded events and provide an interesting method for
processing event streams. We aim to apply this method to a segmentation task between 'ground' and 'sea'
patches, leading to the detection of the coastline.
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1. Synthetic data from a flight simulator

We started by applying the classification layer
(MLR) of our model to synthetically generated
Dynamic Vision Sensor (DVS) data from the
NTUA  flight  simulator.  The  simulator  output
was  divided  into  16x16  pixel  patches  of  1
second each. Using only the single MLR layer
gave  a  near  perfect  test  accuracy  of
approximately  99.9%.  However,  on  further
analysis of  the synthetic data,  we found that
classification  could  be  achieved  simply  by
exploiting  differences  in  raw  event  density
between  the  sea  and  ground  textures.  This
raised  concerns  that  the  model  might  be
overfitting  to  the  biases  inherent  in  the
simplified synthetic data, rather than learning robust discriminative visual features. To properly assess the
real-world applicability of the approach, we recognised the need for a more realistic event-based dataset
generator capable of capturing target classes under more challenging and ambiguous conditions that would
remove synthetic biases. This would allow us to determine whether the method could generalise beyond
the simulated training domain.

2. Event generated from RGB recordings

RGB recordings of  sea and ground scenes were transformed into  events thanks to  an already existing
python package (provided by partner UCA). The recordings are divided into 1 second sequences to gather
a training set of 69 samples and a testing set of 24 samples. We applied the HOTS algorithm with two
layers to the event streams to obtain the transformed event streams that will be used for classification. We
show that classification can be performed with (left  figure) or without (right figure) the creation of 16x16
patches that goes inline with the multiscale feature of the foveated sensor. We observe an increasing of
classification performance when the number of events increases. For the patched based classification we
obtain 68.1% accuracy and for the event-based classification 74.1%. 
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Figure  4:  Accuracy  of  the  SNN  on
synthetic data.



If we put a confidence threshold on the classification decision we highly increase the performances of the
method (88.6% correct classification) but that method does not guarantee a decision for each event, rather
for each event with a high confidence. 

3. Application to a signal obtained from a DVS

We tested this retinotopic mapping method on a
dataset  recorded  by  partner  NTUA  using  a
Dynamic  Vision  Sensor  (DVS).  The  NTUA DVS
dataset  allows  classification  of  visual  events  as
representing  either  sea  or  ground.  Applying  our
HOTS  spiking  neural  network  to  this  data
achieved 77.9% accuracy using only 100 events.
This early classification performance was able to
infer coastline locations through a straightforward
regression  algorithm.  However,  the  current
dataset  is  still  relatively  small  and  would  not
suffice for deployment in a full production system
running on our event-driven flying robot platform.
Nonetheless,  the  promising  results  provide
evidence that extending HOTS to classify larger neuromorphic vision datasets could enable effective visual
processing  applications  in  real  time.  While  more  experimentation  is  needed at  larger  scales,  this  work
demonstrates the potential of the spike-based approach.

4.5 SpiNNaker Implementations

In  light  of  the  limitations  of  SpiNN-3  and  the  imperative  considerations  regarding  drone  control  timing
constraints, we explored the feasibility of employing smaller models. 
Our initial experimentation involved a one-layer classifier, wherein the model was trained on a computer, and
subsequently, the weights were transferred to SpiNN-3.
1. Binary Classifier
Preliminary  findings  indicate  that  when  the  drone  is
flying  over  land,  an  increased  number  of  spikes  are
observed.  However,  this  alone proves insufficient  for
effectively  tracking  coastlines.  Recognizing  the  need
for  enhanced  resolution,  we  progressed  to  a  patch-
based model.
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2. Patch-Based Segmentation( without HOTS)
Illustrated in Figure.2, this approach involves spatially dividing
each input sample into multiple patches for training a binary
classifier. The model's performance is notably influenced by
the patch-size parameter. Optimal results were achieved with
a size of 64 by 64 (refer to Figure.2). Despite achieving
commendable accuracy and recall, the utilization of such a
large patch size is not conducive to our specific objectives.

3. Attention-based Model
Considering the substantial number of events generated by moving objects, we presume that the waves
forming  along  the  shoreline  can  serve  as  reliable  indicators  for  coastline  detection.  Additionally,  since
positive events occurring in front of the waves distinctly indicate their direction of movement, we exclusively
utilize these positive events to conserve space on the SpiNNaker board.

To focus on the region of interest (the moving waves), we employ a series of Von
Mises filters (VM) with varying scales and orientations.

We utilized VM filters with 3 scales (16, 32 and 64) and 3 orientations (-15 , 0  and∘ ∘

15 )  to capture different  regions of  the moving coastline.  The outputs  from their∘

corresponding neural  populations are integrated in a Grouping Population on the
SpiNNaker board. So, establishing appropriate inhibitory connections enables a competition among various
scales and orientations and the SpiNNaker board's ultimate output illustrates the trajectory of the coastline.
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4.6 Perspectives

We have made progress in applying our SNN methodology to different types of vision data, with promising
initial results in each case. Initial testing on synthetic DVS output from the NTUA flight simulator achieved
near perfect classification accuracy. This validated the approach, but highlighted potential overfitting issues.
To address this, we then evaluated performance on real RGB video data converted to events, achieving a
small  improvement in accuracy. More recently, we presented results using the raw output of a dynamic
vision sensor, achieving our highest classification rate to date without any pre-processing.
At the same time, Mazdak Fatahi's work has demonstrated the feasibility of transferring our spiking neural
network technology to low-power neuromorphic hardware - specifically the SpiNNaker 3 (SPIN-3) board.
Deploying  even  early  versions  of  our  models  on  this  specialised  asynchronous  substrate  confirms  the
potential for low-latency embedded implementation.
Looking ahead, we aim to continue optimising our SNN and event-based datasets in parallel. Larger, more
diverse datasets will certainly improve real-world generalisation. At the same time, further algorithmic and
architectural refinement can help exploit the capabilities of neuromorphic hardware. We expect these two
research  directions  -  data  and  architecture  -  to  be  mutually  beneficial  as  development  continues  in
collaboration between our group and collaborators such as Mazdak Fatahi. The combination of increasingly
powerful  SNNs with specialised neuromorphic  platforms holds  great  promise for  the realisation of  truly
event-driven machine perception.
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Figure 5: Transfer of the spiking neural network methods to the SPINN-3 board by Mazdak
Fatahi.
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